2023A11

PERCENTAGES AND GRAPHING

Level 1: You were provided with a sample of wind data for your local area. The data included wind direction information. The dataset was as follows (where N is $0^{\circ}, \mathrm{E}$ is $90^{\circ}, \mathrm{S}$ is 180°, and W is 270°):

- 80 hours from the North
- 120 hours from the Northeast
- 45 hours from the Northwest
- 60 hours from the East
- 30 hours from the West
- 90 hours from the Southeast
- 50 hours from the Southwest
- 0 hours from the South

Calculate the distribution of wind for each wind direction.
To solve this problem, we can start by splitting a circle into sectors based on direction. Where $0^{\circ}=$ North, $90^{\circ}=$ East, $180^{\circ}=$ South, $270^{\circ}=$ West.

Probability of wind blowing from North:

$$
\% N=\frac{\text { Hours from } N}{\text { Sum of all hours }}=\frac{80 \text { hours }}{(80+120+60+90+50+30+45) \text { hours }}=17 \%
$$

Once you calculate the distribution of wind for each wind direction, you should have a table that looks like this:

DIRECTION	HOURS	PROBABILITY
$0(N)$	80	17%
45 (NE)	120	25%
$90(E)$	60	13%
$135($ SE $)$	90	19%
$180(S)$	0	0%
$225($ SW $)$	50	11%
$270(W)$	30	6%
$315(N W)$	45	9%

Level 2: Your wind rose map should look something like the image below.

Wind Study is intended for grades 5-8 and 8-11

This wind rose looks different from the example on the question page. A wind rose's shape will vary based on the amount of wind from each direction over a period of time. This wind rose was made using a small sample of data versus a whole year of data, so the differences between wind directions are more noticeable.

