ANSWERS

Level 1:

The completed table is below. While the speed of light through diamonds is very slow compared to the speed of light in a vacuum, remember how fast that speed still is! Light can still travel through 41.6 million miles of diamond in a single minute!

SPEEDS OF LIGHT	
MATERIAL	FRACTION OF THE "TRUE" SPEED OF LIGHT
Vacuum	$3^{*} 10^{8}$ meters / second (m/s) * This is the highest the speed of light possible aka the "true" speed of light
Air	$\left(3 * 10^{8} \mathrm{~m} / \mathrm{s}\right) * 0.999=2.997^{*} 10^{8} \mathrm{~m} / \mathrm{s}$
Water	$\left(3 * 10^{8} \mathrm{~m} / \mathrm{s}\right) * 0.75=2.26 * 10^{8} \mathrm{~m} / \mathrm{s}$
Windows	$\left(3 * 10^{8} \mathrm{~m} / \mathrm{s}\right) * 0.66=1.97 * 10^{8} \mathrm{~m} / \mathrm{s}$
Diamond	$\left(3 * 10^{8} \mathrm{~m} / \mathrm{s}\right)^{*} 0.41=1.24 * 10^{8} \mathrm{~m} / \mathrm{s}$

Level 2: As a reminder, here is the diagram:

We know that angle A equals 30°. One of the laws of reflection is that angle A and B are equal. Therefore, angle B is also 30°. The surface is flat as well, so we know that

$$
A+B+C=180^{\circ}
$$

Let's do some quick replacements with what we know.

$$
30^{\circ}+30^{\circ}+C=180^{\circ}
$$

Great! Now, we can work through this to solve for C.

$$
\begin{gathered}
60^{\circ}+C=180^{\circ} \\
C=180^{\circ}-60^{\circ} \\
C=120^{\circ}
\end{gathered}
$$

Fiber optic cables, which heavily utilize reflection and refraction allow us to communicate with projects like this one in milliseconds!

