ANSWERS

Level 1: To solve this question, we can follow the formula given to us:

$$
\text { Apparent Power }=\sqrt{\text { Real Power }}{ }^{2}+\text { Reactive Power }{ }^{2}
$$

With 15 W of real power and 3 VAR of reactive power, we need to plug these values into the equation and simplify the equation.

$$
\begin{gathered}
\text { Apparent Power }=\sqrt{15^{2}+3^{2}} \\
\text { Apparent Power }=\sqrt{225+9} \\
\text { Apparent Power }=\sqrt{234}=15.3 \mathrm{VA}
\end{gathered}
$$

Level 2: Let's start with what we know from the problem description.

We also know that one of the angles must be 90°, because real power and reactive power are distinct from each other. Also, the interior angles of a triangle must add up to 180°. We have two of those measurements, 90° and 18.2°, so the third angle must be 71.8°.

Let's review our triangle with all the information that we have now.

Real Power

With these angles, we can solve for the sides in a number of ways. For example, we can use the angle of theta $\left(18.2^{\circ}\right)$ to calculate the apparent power with some trigonometric functions.

$$
\begin{gathered}
\sin (\theta)=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
\sin \left(18.2^{\circ}\right)=\frac{\text { Reactive Power }}{\text { Apparent Power }} \\
0.312=\frac{100}{\text { Apparent Power }} \\
\frac{1}{0.312}=\frac{\text { Apparent Power }}{100} \\
\text { Apparent Power }=320.5 \mathrm{VA}
\end{gathered}
$$

We can solve for real power with another trigonometric function, or we could use the equation from the Level 1 question!

$$
\begin{gathered}
\text { Apparent Power }=\sqrt{\text { Real Power }^{2}+\text { Reactive Power }^{2}} \\
320.5=\sqrt{\text { Real Power }^{2}+100^{2}} \\
102,720=10,000+\text { Real Power }^{2} \\
9,994=\text { Real Power } \\
\\
\text { Real Power }=304.5 \mathrm{~W}
\end{gathered}
$$

One Energy's turbines help power large scale commercial and industrial electric consumers. These consumers must balance their load, meaning they must be careful to minimize their generation of reactive power!

