Wind Study is intended tor grades 5-8 and 8-11 Questions posted on: Monday Answers posted on: Friday Find downloadable one pagers at www.oneenergy.com/one-energy-feed

2022A1

REACTIVE AND APPARENT POWER

ANSWERS

Level 1: To solve this question, we can follow the formula given to us:

Apparent Power = $\sqrt{Real Power^2 + Reactive Power^2}$

With 15 W of real power and 3 VAR of reactive power, we need to plug these values into the equation and simplify the equation.

> Apparent Power = $\sqrt{15^2 + 3^2}$ Apparent Power = $\sqrt{225+9}$ Apparent Power = $\sqrt{234} = 15.3 VA$

Level 2: Let's start with what we know from the problem description.

We also know that one of the angles must be 90°, because real power and reactive power are distinct from each other. Also, the interior angles of a triangle must add up to 180°. We have two of those measurements, 90° and 18.2°, so the third angle must be 71.8°.

Let's review our triangle with all the information that we have now.

 Wind Study is intended for grades 5-8 and 8-11

 Questions posted on: Monday
 Answers posted on: Friday

 Find downloadable one pagers at www.oneenergy.com/one-energy-feed

With these angles, we can solve for the sides in a number of ways. For example, we can use the angle of theta (18.2°) to calculate the apparent power with some trigonometric functions.

> $\sin(\theta) = \frac{Opposite}{Hypotenuse}$ $sin(18.2^{\circ}) = \frac{Reactive Power}{Apparent Power}$ $0.312 = \frac{100}{Apparent Power}$ $\frac{1}{0.312} = \frac{Apparent\ Power}{100}$ Apparent Power = 320.5 VA

We can solve for real power with another trigonometric function, or we could use the equation from the Level 1 question!

> Apparent Power = $\sqrt{Real Power^2 + Reactive Power^2}$ $320.5 = \sqrt{Real Power^2 + 100^2}$ $102,720 = 10,000 + Real Power^2$ $9,994 = Real Power^2$ Real Power = 304.5W

One Energy's turbines help power large scale commercial and industrial electric consumers. These consumers must balance their load, meaning they must be careful to minimize their generation of reactive power!