Level 1:

Volume $*$ Weight per cubic yard $=$ Total Weight
$300 y d^{3} * 4,050 l b / y d^{3}=$ Total Weight $(l b)$
$y d^{3} * l b /_{y d^{3}}=$ Total Weight (lb)
$300 * 4,050 \mathrm{lb}=1,215,000 \mathrm{lb}$

Level 2:

Height $*$ Area $=$ Volume

$$
\text { Height }=4 \mathrm{ft}
$$

Area of regular octagon $=2(1+\sqrt{2}) x^{2}$ where x is the length of one side
Volume $=300$ yd 3
Converting height to yards:

$$
\text { Height }=4 \mathrm{ft}=4 / 3 \mathrm{yd}
$$

Plugging variables into volume equation:

$$
\frac{4}{3} y d * 2(1+\sqrt{2}) x^{2}=300 y d^{3}
$$

Solving for x :

$$
\begin{aligned}
& 2(1+\sqrt{2}) x^{2}=225 y d^{2} \\
& (1+\sqrt{2}) x^{2}=112.5 y d^{2} \\
& x^{2}=46.60 y d^{2} \\
& x=6.83 y d=20.48 \mathrm{ft}
\end{aligned}
$$

2020A1

(2D GEOMETRY, 3D GEOMETRY)
See below for a photo of One Energy pouring a foundation - the dimensions of the foundation in the question were simplified for calculation purposes. In reality, it is a 16 -sided shape with a tapered top.

