2021A26

TRENCHING

Level 1: First, let's calculate the volume of the trench. The trench is in the shape of a rectangular prism, so it's volume can be calculated with the following formula.

$$
\text { Volume }=\text { Length } * \text { Width } * \text { Depth }
$$

Let's ensure that all these measurements have the same units. We have the length at 100 feet, the depth at 4 feet, and the width at 10 inches. The only unit we need to change is the width's inches to feet.

$$
10 \text { inches } * \frac{1 \text { foot }}{12 \text { inches }}=\frac{10}{12} \text { feet }=\frac{5}{6} \text { feet }
$$

Now, we can follow the volume formula.

$$
\text { Volume }=100 \text { feet } * 4 \text { feet } * \frac{5}{6} \text { feet }=333.33 \mathrm{ft}^{3}
$$

We also know that the bucket can hold 0.66 cubic yards of dirt; we'll do a unit conversion on this as well. Remember, there's only 3 feet in a yard, but because we're discussing cubic feet and cubic yards, we need to factor that into our unit conversion. The cube of 3 is $27\left(3^{3}=3 * 3 * 3=27\right)$, so that becomes our conversion factor.

$$
0.66 \frac{y d^{3}}{\text { bucket }} * \frac{\frac{27 \mathrm{ft}^{3}}{y d^{3}}}{\text { bucket }}=18 \frac{\mathrm{ft}^{3}}{\text { bucket }}
$$

Now, we can calculate our answer!

$$
\begin{gathered}
\text { Number of Buckets of Dirt }=\frac{\text { Amount of Dirt }}{\text { Dirt per Bucket }} \\
\text { Number of Buckets of Dirt }=\frac{333.33 \mathrm{ft}^{3}}{18 \frac{f t^{3}}{\text { bucket }}} \\
\text { Number of Buckets of Dirt }=18.5 \text { buckets }
\end{gathered}
$$

Level 2:

Let's start this problem by seeing if we can solve either of our unknowns immediately. We do know that x is four times the width of the trench, and we already know the width of the trench to be 10 inches!

$$
\begin{gathered}
x=4 * \text { Base of Trench } \\
x=4 * 10 \text { inches }=40 \text { inches }=\text { Base of Stack of Dirt }
\end{gathered}
$$

The problem states that all the dirt from the trench is stacked in the triangular shape shown in the diagram above. Therefore, the following is true:

Volume of Trench $=$ Volume of Stack of Dirt

EWIND STUDY |

Cool! We already know that the volume of the trench from the Level 1 question: $333.33 \mathrm{ft}^{3}$. The problem also states that the stack of dirt has a triangular cross-section. Therefore, the whole stack is in the shape of a triangular prism. Replacing the volume of the trench with $333.33 \mathrm{ft}^{3}$ and the volume of the stack of dirt with the equation for the volume of a triangular prism gets us the following:

$$
\begin{gathered}
333.33 \mathrm{ft}^{3}=\frac{1}{2} * \text { Base } * \text { Length } * \text { Height } \\
333.33 \mathrm{ft}^{3}=\frac{1}{2} * 40 \text { inches } * 100 \mathrm{ft} * \text { Height }
\end{gathered}
$$

Great! Now with some simple unit conversions, we can solve for our unknown: height!

$$
\begin{gathered}
333.33 \mathrm{ft}^{3}=\frac{1}{2} * 3.33 \mathrm{ft} * 100 \mathrm{ft} * \text { Height } \\
333.33 \mathrm{ft}^{3}=166.7 \mathrm{ft}^{2} * \text { Height } \\
2 \mathrm{ft}=\text { Height }
\end{gathered}
$$

Our pile will be 2 feet high!

Below is an OE trench in action! Piles of dirt line the left side of the trench, and some neatly bundled cable lays at the bottom.

