2021A12

(PROPORTIONS, RATES)
Level 1: We start by determining the height the bottom rim of the Lower Mid needs to reach.

$$
\text { Base height }(f t)+\text { Additional Clearance }(f t)=\text { Necessary Height }(f t)
$$

$$
39.5 \mathrm{ft}+5 \mathrm{ft}=44.5 \mathrm{ft}
$$

Because we know that the Lower Mid still has to be lifted $3 / 4$ of this distance, it is already $1 / 4$ of the distance off the ground.

$$
\begin{gathered}
\text { Necessary Height }(f t) * \frac{1}{4}=\text { Current Height }(f t) \\
44.5 \mathrm{ft} * \frac{1}{4}=11.125 \mathrm{ft}
\end{gathered}
$$

Level 2: First, determine how many feet the Lower Mid still needs to be raised.

$$
\begin{gathered}
\text { Necessary Height }(f t) * \frac{3}{4}=\text { Remaining Height }(f t) \\
44.5 f t * \frac{3}{4}=33.375 \mathrm{ft}
\end{gathered}
$$

Then divide by the rate of movement to determine the time the lift will take.

$$
\begin{gathered}
\frac{\text { Remaining Height }(f t)}{\text { Lift Rate } \mathrm{ft} / \mathrm{min}}=\text { Time }(\mathrm{min}) \\
\frac{33.375 \mathrm{ft}}{2.5 \mathrm{ft} / \mathrm{min}}=13.35 \mathrm{~min}
\end{gathered}
$$

A Base section being installed.

